Analysis of the Internet Topology

Michalis Faloutsos, U.C. Riverside (PI)
Christos Faloutsos, Carnegie Mellon U. (PI)
Thomas Karagiannis, (UCR)
Georgos Siganos, (UCR)

http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html

Big Picture: Simulate the Internet

- Measure and model each component
 - Identify simple properties and patterns
- Model and simulate their interactions

Overview of Research Directions

1. Characterize and model network behavior:

The use of Long Range Dependence

2. Model and simulate BGP

Large-Scale Realistic simulations (10,000 nodes)

3. Model and simulate the Internet topology

Identify topologies for simulations

Apply datamining techniques in network data

Progress Summary

- Estimating Long Range Dependence
 - There is no systematic way to estimate LRD
 - Pitfalls: estimators can be deceived
 - SELFYS software tool for performance analysis
- A study of BGP policy routing robustness
 - There is persistence and prevalence in BGP paths
 - Routing is fairly robust, but there is a lot of "noise" too
 - A data repository: 107Gb, 1 billion BGP paths
 - Measuring the performance of real-time applications

Next Steps

- A systematic approach to characterizing data:
 - Can we characterize a trace with a few numbers?
 - Estimating LRD and quantifying burstiness
- Effect of topology on performance
 - What causes LRD in network behavior?
- Realistic BGP simulation scenarios and models
 - Simulation Models for BGP
 - Large Scale (10,000) BGP simulations
- Spatiotemporal correlations: traffic and topology

Work Integration and Collaboration

1. Large Scale Measurements

Nageswara Rao, ORNL

2. Performance Characterization

Rolf Riedi, Rice U.

3. Large Scale BGP simulations

- George Riley Gtech, Dave Nichols, Dartmouth
- Anja Feldmann, Saarland U.

Roadmap

I. The hunt for Long Range Dependence

How can I quantify LRD?

II. BGP routing stability and policy

How stable is BGP routing?

III. Measurements for real-time applications

How well does the network perform for i.e. VolP?

Characterizing Network Behavior with Long Range Dependence

- LRD captures the "memory" of the behavior
- # It is quantified by a single scalar number
- LRD appears in many aspects of networks
 - Traffic load, arrival times, delays, packet loss
- Open Question: what does it really tell us?

PROBLEM: We do not know how to estimate LRD!

Many estimators and no systematic approach

The Intuition Behind LRD

Capturing the "dependency" of the current measurement to previous values

White Noise

Pink Noise

Brownian Noise

Idea: Reverse Engineering LRD

- Develop a library of behaviors of known data
- Three series of tests for the estimators
- 1. Evaluating the accuracy of the estimators
 - Synthetic Fractional Gaussian Noise (FGN)
- 2. Deceiving the estimators with non-LRD data
 - Periodicity, Noise, Trend
- 3. Applying the estimators on real data
 - Characterizing delay and packet loss

1. Accuracy: Synthetic LRD Data

- Large difference in values!
- The Whittle and Periodogram are most accurate
- The rest can be significantly inaccurate!

2. Robustness: Deceiving the Estimators

- Periodicity fools many estimators
 - The Whittle, the Periodogram, the R/S and the Abry-Veitch falsely report LRD in series constructed by cosine functions and noise.
- Noise affects the accuracy of estimation
- Trend (Non-Stationarity) also
 - Whittle and Periodogram falsely report LRD

3. Analyzing Real Data

- Measured round trip time
- Initial signal does not exhibit LRD
- What do we do next?

The Measured Data Is Periodic

There is periodicity throughout the dataset

Periodicity Hides the LRD!

Variance Method

RS-plot Method

Measured (periodicity)

Without
periodicity
Estimated:
0.55 and 0.68

RIVERSIDE

Practical Lessons

- LRD estimation and method must be reported
- LRD may exist even if all estimators do not agree
- There is no "consistent-winner" estimator
 - We need to consult many of them
 - Drawing a conclusion is not obvious
- Estimation can be thrown off by
 - Noise, trend and periodicity

Towards a Systematic Approach

- Decompose signal and characterize each component separately
- Use all estimators
- Try reverse engineering

The SELFYS Tool

Given a trace

- Cleans data
- Wavelet and Fourier analysis
- Runs all LRD estimators
- Plots results

SELFYS an open software reference point:

- Java
- Modular
- Free

http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html

Roadmap

I. The hunt for Long Range Dependence

How can I calculate LRD?

II. BGP routing stability and policy

How stable is BGP routing?

III. Measurements for real-time applications

How well does the network perform for VoIP?

BGP Routing/Policy Analysis

Overarching Goal:

 Develop a realistic detailed model for large scale realistic simulations

Now: A study of BGP routing robustness

- Persistence and prevalence of paths
- Stability of advertisements

Next step:

Study the customer-provider relationships

Using Massive BGP Routing Data

- We use data from NLANR for almost 3 years
 - Late 1997 to early 2001
- Daily snapshots of BGP routing tables
- Created a database to facilitate path queries
 - 107Gb of data, 1 billion BGP paths

Overview of Results for BGP Routing

Stable and persistent routing with some "noise"

- 44% prefixes are advertised for < 30 days</p>
- 50% prefixes have a dominant path 84% of time
- #35% of prefixes use one path continuously for 90% of their time!
- Significant path multiplicity due to traffic engin.

Roadmap

I. The hunt for Long Range Dependence

How can I calculate LRD?

II. BGP routing stability and policy

How stable is BGP routing?

III. Measurements for real-time applications

How well does the network perform for VoIP?

Measurements: The Death of the Symmetry Assumption

Fig. 1. CMU dataset with 40-msec sending rate and 320-byte packet size.

One-way delay: Forward can be 10 times higher than backward delay

Overview of Contributions

- Estimating Long Range Dependence
 - There is no systematic way to estimate LRD
 - Pitfalls: estimators can be deceived
 - SELFYS software tool for performance analysis
- A study of BGP policy routing robustness
 - There is persistence and prevalence in BGP paths
 - Routing is fairly robust, but there is a lot of "noise" too
 - A data repository: 107Gb, 1 billion BGP paths
- Measuring the performance of real-time applications

http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html

Analysis of the Internet Topology

- Michalis Faloutsos, U.C. Riverside (PI)
- Christos Faloutsos, Carnegie Mellon U. (PI)

http://www.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS.html

